9.5 Apply Compositions of Transformations

Before

You performed rotations, reflections, or translations.

Now

You will perform combinations of two or more transformations.

Why?

So you can describe the transformations that represent a rowing crew, as in Ex. 30.

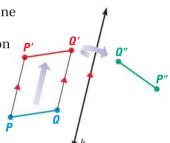
Key Vocabulary

- glide reflection
- composition of transformations

A translation followed by a reflection can be performed one after the other to produce a *glide reflection*. A translation can be called a glide. A **glide reflection** is a transformation in which every point P is mapped to a point P'' by the following steps.

STEP 1 First, a translation maps P to P'.

37EP 2 Then, a reflection in a line k parallel to the direction of the translation maps P' to P''.



EXAMPLE 1

Find the image of a glide reflection

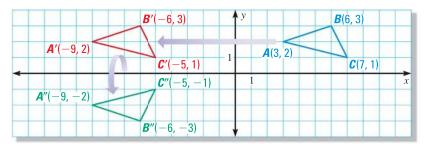
The vertices of $\triangle ABC$ are A(3, 2), B(6, 3), and C(7, 1). Find the image of $\triangle ABC$ after the glide reflection.

Translation: $(x, y) \rightarrow (x - 12, y)$

Reflection: in the *x*-axis

Solution

Begin by graphing $\triangle ABC$. Then graph $\triangle A'B'C'$ after a translation 12 units left. Finally, graph $\triangle A''B''C''$ after a reflection in the *x*-axis.



AVOID ERRORS

The line of reflection must be parallel to the direction of the translation to be a glide reflection.

GUIDED PRACTICE

for Example 1

- 1. Suppose $\triangle ABC$ in Example 1 is translated 4 units down, then reflected in the *y*-axis. What are the coordinates of the vertices of the image?
- **2.** In Example 1, *describe* a glide reflection from $\triangle A''B''C''$ to $\triangle ABC$.

COMPOSITIONS When two or more transformations are combined to form a single transformation, the result is a **composition of transformations**. A glide reflection is an example of a composition of transformations.

In this lesson, a composition of transformations uses isometries, so the final image is congruent to the preimage. This suggests the Composition Theorem.

THEOREM

For Your Notebook

THEOREM 9.4 Composition Theorem

The composition of two (or more) isometries is an isometry.

Proof: Exs. 35-36, p. 614

EXAMPLE 2

Find the image of a composition

The endpoints of \overline{RS} are R(1, -3) and S(2, -6). Graph the image of \overline{RS} after the composition.

Reflection: in the *y*-axis **Rotation:** 90° about the origin

Solution

AVOID ERRORS

Unless you are told otherwise, do the

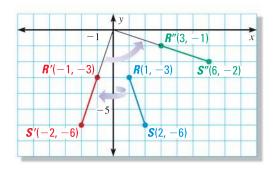
order given.

transformations in the

STEP 1 Graph \overline{RS} .

STEP 2 Reflect \overline{RS} in the *y*-axis. $\overline{R'S'}$ has endpoints R'(-1, -3) and S'(-2, -6).

STEP 3 Rotate $\overline{R'S'}$ 90° about the origin. $\overline{R''S''}$ has endpoints R''(3, -1) and S''(6, -2).



TWO REFLECTIONS Compositions of two reflections result in either a translation or a rotation, as described in Theorems 9.5 and 9.6.

THEOREM

For Your Notebook

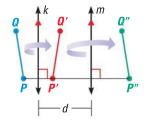
THEOREM 9.5 Reflections in Parallel Lines Theorem

If lines k and m are parallel, then a reflection in line k followed by a reflection in line m is the same as a translation.

If P'' is the image of P, then:

- 1. $\overline{PP''}$ is perpendicular to k and m, and
- **2.** PP'' = 2d, where d is the distance between k and m.

Proof: Ex. 37, p. 614

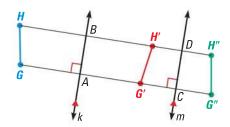


EXAMPLE 3

Use Theorem 9.5

In the diagram, a reflection in line k maps \overline{GH} to $\overline{G'H'}$. A reflection in line m maps $\overline{G'H'}$ to $\overline{G''H''}$. Also, HB=9 and DH''=4.

- **a.** Name any segments congruent to each segment: \overline{HG} , \overline{HB} , and \overline{GA} .
- **b.** Does AC = BD? Explain.
- **c.** What is the length of $\overline{GG''}$?



Solution

- **a.** $\overline{HG} \cong \overline{H'G'}$, and $\overline{HG} \cong \overline{H''G''}$. $\overline{HB} \cong \overline{H'B}$. $\overline{GA} \cong \overline{G'A}$.
- **b.** Yes, AC = BD because $\overline{GG''}$ and $\overline{HH''}$ are perpendicular to both k and m, so \overline{BD} and \overline{AC} are opposite sides of a rectangle.
- **c.** By the properties of reflections, H'B = 9 and H'D = 4. Theorem 9.5 implies that $GG'' = HH'' = 2 \cdot BD$, so the length of $\overline{GG''}$ is 2(9 + 4), or 26 units.

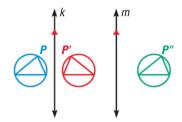
GUIDED PRACTICE

for Examples 2 and 3

- **3.** Graph \overline{RS} from Example 2. Do the rotation first, followed by the reflection. Does the order of the transformations matter? *Explain*.
- **4.** In Example 3, part (c), *explain* how you know that GG'' = HH''.

Use the figure below for Exercises 5 and 6. The distance between line k and line m is 1.6 centimeters.

- **5.** The preimage is reflected in line *k*, then in line *m*. *Describe* a single transformation that maps the blue figure to the green figure.
- **6.** What is the distance between P and P"? If you draw $\overline{PP'}$, what is its relationship with line k? *Explain*.



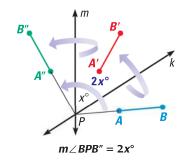
THEOREM

For Your Notebook

THEOREM 9.6 Reflections in Intersecting Lines Theorem

If lines k and m intersect at point P, then a reflection in k followed by a reflection in m is the same as a rotation about point P.

The angle of rotation is $2x^{\circ}$, where x° is the measure of the acute or right angle formed by k and m.



Proof: Ex. 38, p. 614

EXAMPLE 4 Use Theorem 9.6

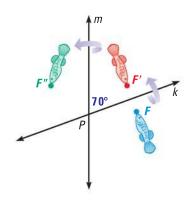
In the diagram, the figure is reflected in line k. The image is then reflected in line m. Describe a single transformation that maps F to F''.

Solution

The measure of the acute angle formed between lines k and m is 70°. So, by Theorem 9.6, a single transformation that maps F to F'' is a 140° rotation about point P.

You can check that this is correct by tracing lines k and m and point F, then rotating the point 140°.

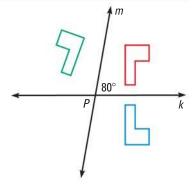
Animated Geometry at classzone.com



GUIDED PRACTICE

for Example 4

- 7. In the diagram at the right, the preimage is reflected in line *k*, then in line *m*. *Describe* a single transformation that maps the blue figure onto the green figure.
- **8.** A rotation of 76° maps C to C'. To map *C* to *C'* using two reflections, what is the angle formed by the intersecting lines of reflection?



9.5 EXERCISES

HOMEWORK KEY

= WORKED-OUT SOLUTIONS on p. WS1 for Exs. 7, 17, and 27

= STANDARDIZED TEST PRACTICE Exs. 2, 25, 29, and 34

SKILL PRACTICE

- 1. **VOCABULARY** Copy and complete: In a glide reflection, the direction of the translation must be _?_ to the line of reflection.
- 2. *** WRITING** *Explain* why a glide reflection is an isometry.

EXAMPLE 1

on p. 608 for Exs. 3-6

GLIDE REFLECTION The endpoints of \overline{CD} are C(2, -5) and D(4, 0). Graph the image of \overline{CD} after the glide reflection.

- **3. Translation:** $(x, y) \rightarrow (x, y 1)$ **Reflection:** in the *y*-axis
- 5. Translation: $(x, y) \rightarrow (x, y + 4)$ **Reflection:** in x = 3
- **4. Translation:** $(x, y) \rightarrow (x 3, y)$ **Reflection:** in y = -1
- **6. Translation:** $(x, y) \rightarrow (x + 2, y + 2)$ **Reflection:** in y = x

EXAMPLE 2

on p. 609 for Exs. 7–14 **GRAPHING COMPOSITIONS** The vertices of $\triangle PQR$ are P(2,4), Q(6,0), and R(7,2). Graph the image of $\triangle PQR$ after a composition of the transformations in the order they are listed.

7. Translation: $(x, y) \rightarrow (x, y - 5)$ Reflection: in the *y*-axis

9. Translation: $(x, y) \rightarrow (x + 12, y + 4)$ **Translation:** $(x, y) \rightarrow (x - 5, y - 9)$

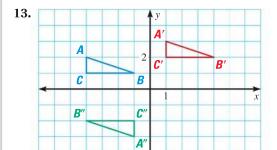
8. Translation: $(x, y) \rightarrow (x - 3, y + 2)$ **Rotation:** 90° about the origin

10. Reflection: in the *x*-axis **Rotation:** 90° about the origin

REVERSING ORDERS Graph $\overline{F''G''}$ after a composition of the transformations in the order they are listed. Then perform the transformations in reverse order. Does the order affect the final image $\overline{F''G''}$?

11. F(-5, 2), G(-2, 4)Translation: $(x, y) \rightarrow (x + 3, y - 8)$ Reflection: in the *x*-axis 12. F(-1, -8), G(-6, -3)Reflection: in the line y = 2Rotation: 90° about the origin

DESCRIBING COMPOSITIONS *Describe* the composition of transformations.



14. C" D" 2- B" A' A 2 B X

C' D' D C

EXAMPLE 3

on p. 610 for Exs. 15–19 **USING THEOREM 9.5** In the diagram, $k \parallel m$, $\triangle ABC$ is reflected in line k, and $\triangle A'B'C'$ is reflected in line m.

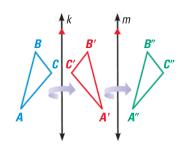
15. A translation maps $\triangle ABC$ onto which triangle?

16. Which lines are perpendicular to $\overrightarrow{AA''}$?

(17.) Name two segments parallel to $\overrightarrow{BB''}$.

18. If the distance between k and m is 2.6 inches, what is the length of $\overrightarrow{CC''}$?

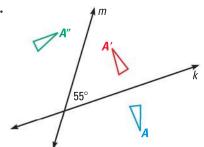
19. Is the distance from B' to m the same as the distance from B'' to m? *Explain*.



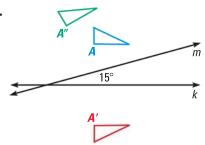
EXAMPLE 4

on p. 611 for Exs. 20–21 **USING THEOREM 9.6** Find the angle of rotation that maps A onto A''.

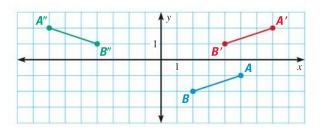
20.



21.



22. ERROR ANALYSIS A student described the translation of \overline{AB} to $\overline{A'B'}$ followed by the reflection of $\overline{A'B'}$ to $\overline{A''B''}$ in the y-axis as a glide reflection. Describe and correct the student's error.



USING MATRICES The vertices of $\triangle PQR$ are P(1, 4), Q(3, -2), and R(7, 1). Use matrix operations to find the image matrix that represents the composition of the given transformations. Then graph $\triangle PQR$ and its image.

- **23.** Translation: $(x, y) \rightarrow (x, y + 5)$ **Reflection:** in the γ -axis
- **24. Reflection:** in the *x*-axis **Translation:** $(x, y) \rightarrow (x - 9, y - 4)$
- **25.** ★ **OPEN-ENDED MATH** Sketch a polygon. Apply three transformations of your choice on the polygon. What can you say about the congruence of the preimage and final image after multiple transformations? *Explain*.
- **26. CHALLENGE** The vertices of $\triangle JKL$ are J(1, -3), K(2, 2), and L(3, 0). Find the image of the triangle after a 180° rotation about the point (-2, 2), followed by a reflection in the line y = -x.

PROBLEM SOLVING

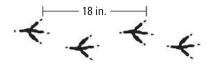
EXAMPLE 1

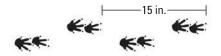
on p. 608 for Exs. 27-30

ANIMAL TRACKS The left and right prints in the set of animal tracks can be related by a glide reflection. Copy the tracks and describe a translation and reflection that combine to create the glide reflection.

(27.) bald eagle (2 legs)

28. armadillo (4 legs)





- @HomeTutor for problem solving help at classzone.com
- **29.** ★ **MULTIPLE CHOICE** Which is *not* a glide reflection?
 - **A** The teeth of a closed zipper
- **B** The tracks of a walking duck
- **©** The keys on a computer keyboard **D** The red squares on two adjacent rows of a checkerboard
- @HomeTutor for problem solving help at classzone.com
- **30. ROWING** *Describe* the transformations that are combined to represent an eight-person rowing shell.

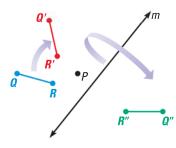
SWEATER PATTERNS In Exercises 31–33, describe the transformations that are combined to make each sweater pattern.

34. ★ **SHORT RESPONSE** Use Theorem 9.5 to *explain* how you can make a glide reflection using three reflections. How are the lines of reflection related?

35. PROVING THEOREM 9.4 Write a plan for proof for one case of the Composition Theorem.

GIVEN A rotation about *P* maps Q to Q' and Rto R'. A reflection in m maps Q' to Q''and R' to R''.

PROVE \triangleright OR = O''R''



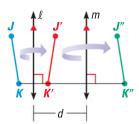
36. PROVING THEOREM 9.4 A composition of a rotation and a reflection, as in Exercise 35, is one case of the Composition Theorem. List all possible cases, and prove the theorem for another pair of compositions.

37. PROVING THEOREM 9.5 Prove the Reflection in Parallel Lines Theorem.

GIVEN A reflection in line ℓ maps \overline{JK} to $\overline{J'K'}$, a reflection in line m maps $\overline{J'K'}$ to $\overline{J''K''}$, and $\ell \parallel m$.

PROVE \triangleright **a.** $\overrightarrow{KK''}$ is perpendicular to ℓ and m.

b. KK'' = 2d, where d is the distance between ℓ and m.

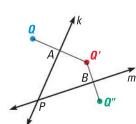


38. PROVING THEOREM 9.6 Prove the Reflection in Intersecting Lines Theorem.

GIVEN \blacktriangleright Lines k and m intersect at point P. Q is any point not on k or m.

PROVE \triangleright a. If you reflect point O in k, and then reflect its image Q' in m, Q'' is the image of Q after a rotation about point *P*.

b. $m \angle OPO'' = 2(m \angle APB)$



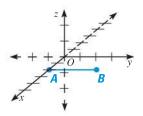
Plan for Proof First show $k \perp \overline{QQ'}$ and $\overline{QA} \cong \overline{Q'A}$. Then show $\triangle QAP \cong \triangle Q'AP$. In the same way, show $\triangle Q'BP \cong \triangle Q''BP$. Use congruent triangles and substitution to show that $\overline{QP} \cong \overline{Q''P}$. That proves part (a) by the definition of a rotation. Then use congruent triangles to prove part (b).

39. VISUAL REASONING You are riding a bicycle along a flat street.

a. What two transformations does the wheel's motion use?

b. *Explain* why this is not a composition of transformations.

40. MULTI-STEP PROBLEM A point in space has three coordinates (x, y, z). From the origin, a point can be forward or back on the *x*-axis, left or right on the *y*-axis, and <u>up</u> or down on the *z*-axis. The endpoints of segment \overline{AB} in space are A(2, 0, 0) and B(2, 3, 0), as shown at the right.

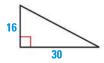


- **a.** Rotate \overline{AB} 90° about the *x*-axis with center of rotation *A*. What are the coordinates of $\overline{A'B'}$?
- **b.** Translate $\overline{A'B'}$ using the vector $\langle 4, 0, -1 \rangle$. What are the coordinates of $\overline{A''B''}$?
- **41. CHALLENGE** *Justify* the following conjecture or provide a counterexample. **Conjecture** When performing a composition of two transformations of the *same type*, order does not matter.

MIXED REVIEW

Find the unknown side length. Write your answer in simplest radical form. (p. 433)

42.



43.

44.

PREVIEW

Prepare for Lesson 9.6 in Exs. 45–48. The coordinates of $\triangle PQR$ are P(3, 1), Q(3, 3), and R(6, 1). Graph the image of the triangle after the translation. (p. 572)

45.
$$(x, y) \rightarrow (x + 3, y)$$

46.
$$(x, y) \rightarrow (x - 3, y)$$

47.
$$(x, y) \rightarrow (x, y + 2)$$

48.
$$(x, y) \rightarrow (x + 3, y + 2)$$

QUIZ for Lessons 9.3–9.5

The vertices of $\triangle ABC$ are A(7, 1), B(3, 5), and C(10, 7). Graph the reflection in the line. (p. 589)

2.
$$x = -4$$

3.
$$y = -x$$

Find the coordinates of the image of P(2, -3) after the rotation about the origin. (p. 598)

4.
$$180^{\circ}$$
 rotation

5.
$$90^{\circ}$$
 rotation

6.
$$270^{\circ}$$
 rotation

The vertices of $\triangle PQR$ are P(-8,8), Q(-5,0), and R(-1,3). Graph the image of $\triangle PQR$ after a composition of the transformations in the order they are listed. (p. 608)

7. Translation:
$$(x, y) \rightarrow (x + 6, y)$$

Reflection: in the *y*-axis

9. Translation:
$$(x, y) \rightarrow (x - 5, y)$$

Translation: $(x, y) \rightarrow (x + 2, y + 7)$

8. Reflection: in the line
$$y = -2$$
 Rotation: 90° about the origin

10. Rotation:
$$180^{\circ}$$
 about the origin **Translation:** $(x, y) \rightarrow (x + 4, y - 3)$